	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSIT	Y, LONERE	
	Winter Examination – 2022		
	Course: B. Tech. Branch: Electrical	Semester : VII	
	Subject Code & Name: BTEEC701 Power System Operation & Contro	l	
	Max Marks: 60 Date: 27-01-2023 Duration: 3	Hr.	
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Ou which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 	n.	
		(Level/CO)	Marks
Q. 1	Solve Any Two of the following.		12
A)	Define per unit value. Write any two advantages of per unit representation. A three-phase star-connected, 75MVA, 25kV synchronous generator has a synchronous reactance of 9 ohm per phase. Using rated MVA and voltage as base values, determine the per-unit reactance.	Application	6
B)	Write a short note on the On-load tap changing transformer and the regulating transformer.	Understand	6
C)	With the help of power triangle & equations describe the concept of real power, reactive power, and complex power.	Understand	6
Q.2	Solve Any Two of the following.		12
A)	Briefly explain the Park's transformation i.e. dq0 transformation.	Understand	6
B)	With neat diagrams explain the different types of excitation systems of an alternator.	Understand	6
C)	With a neat block diagram explain the load frequency control of the synchronous machine.	Understand	6
Q. 3	Solve Any Two of the following.		12
A)	Explain the modeling of the generator, load, and governor system in the case of a thermal power plant.	Understand	6
B)	With a neat diagram explain the equal area criteria for assessing transient stability.	Understand	6
C)	Derive the swing equation of the synchronous Machine.	Application	6
		İ	

Q.4	Solve Any Two of the following.		12
A)	With a neat diagram describe the point-by-point method of solving the	Understand	6
	Swing equation.		
B)	The fuel costs of two generators are given by,	Application	6
	$C_1 = 1.6 + 15P_1 + 0.1P_1^2 Rs/hr.$		
	$C_2 = 1.8 + 25P_2 + 0.1P_2^2 Rs/hr.$		
	If the total demand for the generators is 250MW find the economic load-		
	ing of two generators.		
C)	Derive the condition for economic load dispatch when transmission losses	Application	6
٥,	are neglected.	1-PP-1-0-11-0-11	Ū
Q. 5	Solve Any Two of the following.		12
A)	Derive the expression for transmission line losses in terms of power plant	Application	6
	generation when two units are supplying the load. Also, write the		
	equations of loss coefficients.		
B)	With a neat diagram explain the operation of a synchronous condenser.	Understand	6
C)	Explain the reactive power compensation by the capacitor and derive the	Application	6
	expression for the reactive power supplied by the capacitor.		
	*** End ***		

The grid and the borders of the table will be hidden before final printing.