	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE			
	Supplementary Examination – Summer 2022			
	Course: B. Tech. Branch: Electrical Semester: IV			
	Subject Code & Name: BTEEC404(Numerical Methods and Programming)			
	Max Marks: 60Date:Duration: 3 Hr.			
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 			
		(Level/CO)	Marks	
Q. 1	Solve Any Two of the following.			
A)	Write array handling functions and its example with explanation.	CO1	06	
B)	Explain basic mathematics expressions and examples of element to element division and power.	CO1	06	
C)	Write all output commands in MATLAB and write a program for plotting a circle.	CO1	06	
Q.2	Solve Any Two of the following.			
A)	Round off the number 75462 to four significant figures and then calculate absolute error and percentage error.	CO2	06	
B)	If $u = \frac{4x^2y^3}{z^4}$ and error in <i>x</i> , <i>y</i> , <i>z</i> be 0.001. Calculate the relative max error in <i>u</i> when $x = y = z = 1$	CO2	06	
C)	Using the series $sinx = \frac{x-x^3}{3!} + \frac{x^5}{5!} - \cdots$ Evaluate $sin25^0$ with an accuracy of 0.001.	CO2	06	
Q. 3	Solve Any Two of the following.			
A)	Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using i) Trapezoidal Rule ii) Simpson's one-third rule and compare with actual value.	CO3	06	
B)	Given the value of $\bar{x} = 2.5$ with an error $\Delta \bar{x} = 0.01$. Estimate the resulting error in the function $f(x) = x^3$	CO3	06	
C)	Explain MATLAB functions for integration.	CO3	06	
Q.4	Solve Any Two of the following.			
A)	Using Bisection method find approximate roots of $x^3 + 2x - 1 = 0$ upto three iterations	CO4	06	

B)	Using LU decomposition method solve the equations	CO4	06
	3x + y + z = 4, x + 2y + 2z = 3, 2x + y + 3z = 4		
C)	Using Gauss Seidel method to solve equations	CO4	06
	27x + 6y - z = 85, x + y + 54z = 110, 6x + 15y + 2z = 72		
Q. 5	Solve Any Two of the following.		
A)	Explain lsqcurvefit function with example.	CO3	06
B)	Find y(2.2) using Euler's method from the equation $\frac{dy}{dx} = -xy^2$ with y(2) = 1	CO3	06
C)	Using Runge -Kutta second order method, find approximate value	CO3	06
	of y when $x = 1.1$, given $\frac{dy}{dx} = 3x + y^2$ and $y = 1.2$ when $x = 1$		
	*** End ***		

The grid and the borders of the table will be hidden before final printing.