	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE			
	Summer Examination – 2023			
	Course: B. Tech. Branch :Electrical Ser	nester :VI		
	Subject Code & Name: BTEEC603 Subject: Control system En	gineering		
	Max Marks: 60 Date: Duration: 3 Hr			
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outco which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 	me(CO) on	Marks	
0.1			12	
Q. 1	Solve Any 1 wo of the following.	COI	12	
A)	Explain signal flow graph in detail with the help of Masons gain formula.	CO1	6	
B)	Using the block diagram reduction technique, find the closed loop	CO1	6	
	$\begin{array}{c} R(s) & H_2 \\ \hline H_2 \\ \hline G_1 \\ \hline H_2 \\ \hline G_2 \\ \hline G_3 \\ \hline H_1 \\ \hline H_1 \\ \hline \end{array} \\ C(s)$			
C)	Obtained the analogous electrical network for the system shown in		6	
	figure. $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $			

Q.2	Solve Any Two of the following.		12
A)	A unity feedback system has $G(s) = \frac{20(s+3)}{(s+1)(s+6)}$ Determine type of system,	CO2	6
	all error coefficient, error when subjected to a step of magnitude 2.		
B)	Determine the stability using Routh's Criteria : s ⁵ +2s ⁴ +3s ³ +6s ² +2s+1	CO2	6
C)	Check whether the given system is stable or not by using Hurwitz	CO2	6
	criterion.		
	$R(s) \longrightarrow \begin{array}{c} \hline 7 \\ \hline s(s+1)(s+2) \end{array} \longrightarrow C(s)$		
0.3	Solve Any Two of the following.		12
	Derive the transfer function of lead compensator using electrical	CO3	6
11)	network.	005	Ū
B)	Draw the approximate root-locus diagram for close loop system whose	CO3	6
	transfer function is given by $G(s)H(s) = \frac{k}{s(s+5)(s+10)}$		
C)	Sketch the Bode plot showing the magnitude the decibel and phase angle	CO3	6
	in degrees as a function of log frequency for the transfer function given		
	below. Determine the gain cross-over frequency $\omega_{ m gc}$.		
	$G(s) = \frac{10}{s(1+0.5s)(1+0.01s)}$		
Q.4	Solve Any Two of the following.		12
A)	Write a short note on PI controller and PID controller.	CO4	6
B)	What are the effects of proportional, integral and derivative control on the time response of the system.	CO4	6
C)	A PI controller is used to control a system. It has the following settings,	CO4	6
,	$k_p = 2\%$, $k_i = 3\%$ per minutes, $m(0) = 25\%$. The error signal is found to		
	be 4t + 2. Find the controller output in percent after 2 minutes.		
	Coluc Ann True of the following		10
Q. 5	Obtain the state model for the system with the two of the for the	COF	
A)	$y(s) = \frac{3s+4}{s^2+5s+6}$	CUS	0
B)	Find the state transition matrix for, $A = \begin{bmatrix} 1 & 0 \\ -6 & -5 \end{bmatrix}$	CO5	6

C)	A linear time invariant system is characterized by the state variable	CO5	6
	model. Comment on the controllability and observability of the system.		
	$\begin{bmatrix} \dot{X_1} \\ \dot{X_2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$		
	$Y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$		
	*** End ***		